Notes

The Product of Affine Orthogonal Projections

Peter Kosmol
Mathematical Seminar, Kiel L'niversity, D-2300 Kiel I. Germany

AND
Xin-long Zhou
Department of Mathematics, Hangzhou University, Hangzhou, China; and Mathematical Seminar, Kiel U'niversity, D-2300 Kiel I, Germany

Communicated by Paul L. Butzer
Received June 27, 1988

In the case of a finite number of subspaces in a given Hilbert space, by a theorem: of J. von Neumann, the iteration of the product of projectors is always convergent. In a finite dimensional Hilbert space, this theorem has been generalized for affine subspaces. In this paper we construct an cxample which shows that this result does not hold in the infinite dimensional case. 1991 Academic Press. Inc.

Let $T_{i}^{0}(i=1,2, \ldots, m)$ denote the orthogonal projection operator onto a subspace H_{i} of a Hilbert space H. The following von Neumann theorem is well known (see $[5,8]$).

Theorem A. For any x_{0} in the Hilbert space H the alternating algorithm

$$
x_{k+1}=\left(\begin{array}{ll}
T_{m}^{0} T_{m}^{0} & 1
\end{array} \cdots T_{1}^{0}\right) x_{k}
$$

converges as $k \rightarrow x$. Furthermore, the limit point is a fixed point of $T_{m}^{0} \cdots T_{1}^{0}$.

Now let $V_{i}=H_{i}+f_{i}$ be affine subspaces of H, and let T_{i} be the affine orthogonal projection (metric projection) onto $V_{i}, i=1,2, \ldots, m$ We shall write "projector" instead of "orthogonal projection." In this respect Kosmol [6] has established

Theorfm B. If H is a finite dimensional Hilhert space, then the alternating algorithm

$$
\begin{equation*}
x_{0} \in H, \quad x_{k-1}=\left(T_{1} T_{m} T_{m} \quad 1 \cdots T_{1}\right) x_{k} \tag{1}
\end{equation*}
$$

converges to a fixed point of $T_{1} T_{m} \cdots T_{1}$, as $k \rightarrow \infty$.
Theorem B shows that for finite dimensional Hilbert spaces Theorem A is true for the product of affine projectors. Now, the question is whether Theorem B also holds in infinite dimensional Hilbert spaces. It is not difficult to see that if $\bigcap_{i=1}^{m} V_{i} \neq \varnothing$, von Neumann's theorem is also true for affine projectors (see [3]). Under this condition or something like this, a more general discussion can also be found in [2]. But what can we say if $\bigcap_{i=1}^{m} V_{i}=\varnothing$? We see that in this case $T=T_{m} \cdots T_{1}$ may not have any fixed points. To show this we first record the following result which can be obtained from a general theorem about nonexpansive mappings (see, e.g., $[1,7]$). We write it now as

Proposition 1. The following three assertions are equivalent:
(1) T has a fixed point,
(2) the semiorbit $\left\{T^{n}(0): n \in N\right\}$ is bounded in H, and
(3) there exists a nonempty bounded, closed, and convex subset K of H with $T(K) \subset K$.

Now we are ready to mention our results. We have
Proposition 2. If $H_{1}+H_{2}$ is closed, and $f_{1}, f_{2} \in H$ then the product of the affine projectors $T_{1}: H \rightarrow H_{1}+f_{1}$ and $T_{2}: H \rightarrow H_{2}+f_{2}$ has Fix $T_{2} T_{1} \neq \varnothing$.

Proof. Let us suppose that $f_{1} \in H_{1}^{\perp}$ and $f_{2} \in H_{2}^{\perp}$. In fact $H_{i}+f_{i}=$ $H_{i}+f_{i}^{\perp}$, where $f_{i}^{\perp} \in H_{i}^{\perp}, f_{i}-f_{i}^{\perp} \in H_{i}$, and $i=1$, 2. First, if $f_{1}=0$ we have

$$
\begin{equation*}
\text { Fix } T_{1} T_{2}=\left\{H_{2}+H_{1} \cap H_{2}^{\perp}+f_{2}\right\} \cap H_{1} \tag{2}
\end{equation*}
$$

To prove this, let $x \in \operatorname{Fix} T_{1} T_{2}$. Obviously $x \in H_{1}$. On the other hand since $f_{2} \in H_{2}^{\prime}$, we have for $y \in H$ and T_{2}^{0} the projector onto $H_{2}, T_{1} T_{2} y=$ $T_{1} T_{2}^{0} y+T_{1} f_{2}$. Hence $T_{1}\left(T_{2}^{0} x-x\right)=-T_{1} f_{2}$. Putting $x=x_{1}+x_{2}, x_{1} \in H_{2}$, and $x_{2} \in H_{2}^{-}$, we get for some $a \in H_{1}^{\perp}, x_{2}=a+f_{2}$ and $x=x_{1}+a+f_{2}$. Therefore

$$
x \in\left\{H_{2}+\left(H_{1}^{-}+f_{2}\right) \cap H_{2}^{\perp}\right\} \cap H_{1}=\left\{H_{2}+H_{1}^{-} \cap H_{2}^{-}+f_{2}\right\} \cap H_{1} .
$$

Conversely, for $x \in\left\{H_{2}+H_{1}^{\perp} \cap H_{2}^{\perp}+f_{2}\right\} \cap H_{1}, \quad x=x_{1}+x_{2}+f_{2}, \quad x_{1} \in$ $H_{2}, x_{2}+f_{2} \in H_{2}^{\perp}$, and $x_{2} \in H_{1}^{1}$. Hence $x=T_{1} T_{2}^{6} x+T_{1} f$ and $x \in$ Fix $T_{1} T_{2}$.

Now since $H_{1}+H_{2}$ is closed, we obtain $f_{2}=a_{1}+a_{2}+h, a_{1} \in H_{1}, a_{2} \in H_{2}$. and $h \in\left(H_{1}+H_{2}\right)^{-}=H_{1}^{-} \cap H_{2}$. Put $x=-a_{2}+(-h)+f_{2}$. Then $x \in\left(H_{2}+\right.$ $\left.H_{1}^{\prime} \cap H_{2}^{i}+f_{2}\right) \cap H_{1}$. That means Fix $T_{1} T_{2} \neq \varnothing$.

Denote by T_{1}^{0}, T_{2}^{0} the projectors onto H_{1}, H_{2}. respectively, and $T_{0}=$ $T_{2}^{0} T_{1}^{0}$. It follows from (2)

$$
\operatorname{Fix} T_{1}^{0} T_{2} \neq \varnothing, \quad \text { Fix } T_{2}^{0} T_{\mathrm{i}} \neq \varnothing
$$

But,

$$
\begin{equation*}
T^{k} x=T_{0}^{k} x+\sum_{j=0}^{k-1} T_{0}^{j}\left(T_{2}^{0} f_{1}+f_{2}\right) \tag{3}
\end{equation*}
$$

Let $x_{1} \in$ Fix $T_{1}^{0} T_{2}$. Then $T_{1}^{0} f_{2}=x_{1}-T_{1}^{0} T_{2}^{0} x_{1}$ and

$$
\left|\sum_{j=1}^{\vee} T_{0}^{j} f_{2}\right|=\mid \sum_{j=1}^{\mathrm{N}}\left(T_{2}^{0} T_{1}^{0}\right)^{i-1}\left(T_{2}^{0} x_{1}-T_{2}^{0} T_{1}^{0} x_{1}\right) \leqslant 2: x_{1}!
$$

Let $x_{2} \in$ Fix $T_{2}^{0} T_{1}$; then $T_{2}^{0} f_{1}=x_{2}-T_{2}^{0} T_{1}^{0} x_{2}$ and

$$
\sum_{j=1}^{N} T_{0}^{j}\left(T_{2}^{0} f_{1}\right)\left\|^{\|}=\right\| \sum_{j-1}^{N}\left(T_{0}^{j} x_{2}-T_{0}^{j+1} x_{2}\right) \leqslant 2 \| x_{2}
$$

Hence

$$
\sup _{v} \sum_{j=1}^{N} T_{0}^{j}\left(T_{2}^{0} f_{1}+f_{2}\right) \leqslant 2\left(\| x_{1}|+| x_{2}\right)
$$

Thus, it follows from Proposition 1 and (3) that Fix $T \neq \varnothing$ or Fix $T_{2} T_{1} \neq \varnothing$.

Similar to [9], let $\cos \theta=\sup \mid\langle x, y\rangle$, for x and y in $H_{1} \cap\left(H_{1} \cap H_{2}\right)$ and $H_{2} \cap\left(H_{1} \cap H_{2}\right)^{\text {L }}$ with $\|x\|=, y \|=1$, respectively.

Proposition 3. If $\cos \theta<1$, then Fix $T_{2} T_{1} \neq \varnothing$.
Proof. By [9], when $\cos \theta<1$, there exists a constant $0<C<1$ such that

$$
\left|T_{0}^{k} x\right| \leqslant C^{k}|x|
$$

for $x \in\left(H_{1} \cap H_{2}\right)^{\perp}$. Using (3) we get

$$
\sup _{k} \| T^{k}(0) \mid<x
$$

Hence Fix $T_{1} T_{2} \neq \varnothing$ by Proposition 1.
The main result of this paper is the following

Theorem. There exist H, H_{1}, H_{2}, and $f \in H_{2}^{-}$such that the product of the affine projectors $T_{1}: H \rightarrow H_{1}$ and $T_{2}: H \rightarrow H_{2}+f$ has no fixed points, i.e.,

$$
\text { Fix } T_{2} T_{1}=\varnothing
$$

Proof. As in [4], let $H=l_{2} \times l_{2}, H_{1}=\left\{(y, A y), y \in l_{2}\right\}$, and $H_{2}=$ $\left\{(y, 0), y \in l_{2}\right\}$ with $A y=\left\{a_{n} y_{n}\right\}$, where $0<a_{n} \leqslant 1, a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then H_{1} and H_{2} are closed subspaces. For some $\left\{a_{n}\right\}, H_{1}+H_{2}$ is not closed. Let T_{1} be the projector onto H_{1}. It is casy to see that, for $x=\left\{x_{n}\right\} \in l_{2}$,

$$
\begin{equation*}
T_{1}(0, x)=\left(\left\{\frac{a_{n} x_{n}}{1+a_{n}^{2}}\right\},\left\{\frac{a_{n}^{2} x_{n}}{1+a_{n}^{2}}\right\}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{1}(x, 0)=\left(\left\{\frac{x_{n}}{1+a_{n}^{2}}\right\},\left\{\frac{x_{n} a_{n}}{1+a_{n}^{2}}\right\}\right) \tag{5}
\end{equation*}
$$

Put $f=(0, y) \in H_{2}^{\perp}$ with $y=\left\{y_{n}\right\}, T_{2}$ as the affine projector onto $H_{2}+f$, and T_{2}^{0} as the corresponding projector. We have Fix $T_{2} T_{1}=\varnothing$ for some $f \in H_{2}^{1}$. In fact, if Fix $T_{2} T_{1} \neq \varnothing$, then there exists $x \in \operatorname{Fix} T_{2} T_{1}$ such that

$$
x=T_{2} T_{1} x=T_{2}^{0} T_{1} x+f \equiv T_{0} x+f
$$

and for $k \in N$, by (3)

$$
x=\left(T_{2} T_{1}\right)^{k} x=T_{0}^{k} x+\sum_{j=0}^{k} T_{0}^{j} f
$$

$T_{0}^{k} x$ is convergent as $k \rightarrow \infty$ due to Thcorem A, so $\sum_{j=0}^{\alpha_{i}} T_{0}^{j} f$ is convergent. On the other hand, by (4) and (5),

$$
T_{2}^{0} T_{1} f=\left(\left\{\frac{a_{n} y_{n}}{1+a_{n}^{2}}\right\},\{0\}\right)
$$

and

$$
T_{0}^{k} f=\left(\left\{\frac{a_{n} y_{n}}{\left(1+a_{n}^{2}\right)^{k}}\right\},\{0\}\right)
$$

so

$$
\left\{y_{n} a_{n} \sum_{k=1}^{\infty} \frac{1}{\left(1+a_{n}^{2}\right)^{k}}\right\} \in l_{2}
$$

But $\left\{b_{n} a_{n}^{1}\right\} \notin l_{2}$ if $a_{n}=y_{n}=1$ in. Therefore Fix $T_{2} T_{1}=\varnothing$ for $f=$ ($0,\{1 / n\}$). The proof is complete.

For the construction of Fix T, we have
Proposition 4. Let $T=T_{m} T_{m} \quad{ }_{1} \cdots T_{1}$ be the product of affine projectors in Hilbert space with Fix $T \neq \varnothing$. Then

$$
\operatorname{Fix} T=\left\{x_{0}+x \mid x \in \bigcap_{i=1}^{m} H_{i}\right\},
$$

where x_{0} is a fixed point of T.
Proof. Suppose $x_{1}, x_{2} \in$ Fix T. We obtain

$$
x_{1}-x_{2}=T x_{1}-T x_{2}=T_{0} x_{1}-T_{0} x_{2}=T_{0}\left(x_{1}-x_{2}\right)
$$

So $x_{1}-x_{2} \in$ Fix T_{0}. By [6], $x_{1}-x_{2} \in \bigcap_{i=1}^{m} H_{i}$. Hence there is a $z \in \bigcap_{i=1}^{m} H_{i}$ such that $x_{1}=x_{2}+z$. If $x_{0} \in \operatorname{Fix} T, x \in \bigcap_{i}^{m}, H_{i}$, then by the definition of T

$$
T\left(x_{0}+x\right)=T_{0}\left(x_{0}+x\right)+T(0)=x+T_{0}\left(x_{0}\right)+T(0)=x+x_{0}
$$

i.e., $x_{0}+x \in \operatorname{Fix} T$.

References

1. F. E. Browuer, Convergence of approximations to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational Mech. Anal (1967), 8290.
2. R. B. Breck, Asymptotic behavior of nonexpansive mappings, Conemp. Math. 18 (1983), 147.
3. F. Decisen, Application of von Neumann's alternating projections algorithm, in "Mathematical Methods in Operations Research," pp. 44-51, Bulgar. Acad. Sci., Sofia, 1983.
4. C. Franchitti and W. Light, The alternating algorithm in uniformly convex spaces, J. London Math. Soc. 12; 29 (1984), 545-555.
5. 6. Halperin, The product of projections operators, Acta Sci, Math. (Szeged) 23 (1962). 9699.
1. P. Kosmol., Über die sukzessive Wahl des kürzesten Weges, in "Ökonomie und Mathematik," pp. 35 42, Springer-Verlag, Berlin/Nicw York, 1987.
2. G. Müller and J. Reinifmann, A theorem on strong convergence in Banach spaces with applications to fixed points of nonexpansive and pseudocontrative mappings, in "Constructive Function Theory," pp. 417-425, Sofia, 1980.
3. J. von Nelmann, "Functional Operators," Vol. II, Ann Math. Studies 22. Princeton Univ. Press, Princeton. NJ, 1950.
4. K. T. Smith. D. C. Solmon, anid S. L. Wagntr, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull Amer. Math. Soc. (1983). 12271270.
